SOPs/ INSTRUCTION MANUAL

1) Preparation of solution of different concentration from given stock solution.

If you have a concentrated stock solution of known concentration, you can prepare a working solution of specific concentration and volume by diluting the stock solution. Use the following formula to calculate the volume of stock solution required to prepare a diluted solution

$$C_f x V_f = C_S x V_S$$

Cf: Concentration of diluted solution

V_f: Volume of diluted solution

Cs: Concentration of stock solution

V_S: Volume of stock solution

Example: The concentration of stock solution is given in x fold (times) e.g. 10X stock solution For example, you want to prepare 100 ml of working solution (after dilution) from 10X stock solution

 $\begin{array}{l} C_{f:} 1 \ X \\ V_{f:} \ 100 \ ml \\ C_{S:} \ 10 \ X \\ V_{S:} \ ? \ ml \ (to \ be \ calculated) \\ Formula: \ C_{f} x \ V_{f} = C_{S} \ x \ V_{S} \end{array}$

Place all values in formula:

 $1 \ge 100 = 10 \ge V_S$ Vs= 1×100/10

 $V_S = 10 \text{ ml}$

So you need to take 10 ml of 10 X stock solution to prepare a 100 ml working (diluted) solution. How much solvents do you need to add?

The final volume of the working (diluted) solution: 100 ml

The volume of stock solution to be taken: 10 ml

The volume of water to be added: 100 - 10 = 90 ml

So you need to mix 10 ml of 10X stock solution and 90 ml water to obtain 100 ml of working (diluted) solution.

Example: When the concentration of stock solution concentration is given in a concentration unit e.g. 1 M stock solution

For example, you want to prepare 100 ml of 1 mM EDTA solution from 0.5M EDTA solution $C_{f}\!\!:1\mbox{ mM}$

V_f: 100 ml

Cs: 0.5 M

V_S: ? ml (to be calculated)

Tip: Stock concentration is given in M (molar) and working concentration is given in mM (milliMolar). Convert Stock concentration Molar to millimolar.

1 M = 1000 mM

Now the values are:

Cf: 1 mM

V_f: 100 ml

Cs: 500 mM

 V_S : ? ml (to be calculated)

Place all values in formula:

 $C_f x V_f = C_S x V_S$ $1 x 100 = 500 x V_S$ $V_S = 1 \times 100/500$ $V_S = 0.2 \text{ ml}$ So you need to take 0.2 ml of 0.5M EDTA solution to prepare 100 ml of 1 mM EDTA solution. How many solvents do you need to add? The final volume of the working solution: 100 ml The volume of stock solution to be taken: 0.2 ml The volume of water to be added: 100 - 0.2 = 99.8 mlSo you need to mix 0.2 ml of 0.5M EDTA solution and 99.8 ml water to obtain 100 ml of 1 mM EDTA solution.

2) To separate cations of group I (Pd²⁺, Ag⁺, Hg₂²⁺) by using paper chromatography.

Apparatus: Beakers, Stirrer, Watch glass, Capillary tube Whatmann filter paper, measuring cylinder etc.

Chemicals required: Distilled water, Acetone, Lead nitrate, Silver nitrate and mercurous nitrate. **Theory:** Paper chromatography can be considered to be a type of partition chromatography where the partition occurs as a consequences solid-liquid or ion exchange equilibria. Two types of forces operate when drop of solution is applied on the filter paper and treated with a solvent.

Propelling forces: It tries to drag the substances in the direction of flow of solvent. This depend upon:

- The rate of flow of the solvent.
- The solubility of the substances in the solvent substances have different solubilities nature. The component having higher solubility will move rapidly along the strip of the filter paper than the less soluble component.

Retardation forces: Retarding force tries to drag the substance behind toward its point of applied cation. This retardation depends on the absorption and partition. The amount of solute in each solvent depends on relative solubility of the substances in the two solvents. This leads to the partition coefficient at the equilibrium and the contribution of R_{f} .

Retardation factor R_f value: The relative rate of the movement of solvent and solute is expressed by a term R_f value.

It is defined as the ratio of the distance travelled by the component at its point of maximum concentration to distance travelled by the solvent.

$$R_{f} = \frac{\text{Distance travelled by sample}}{\text{Distance travelled by solvent}}$$

Procedure:

- 1. Take a pinch of each compound in a beaker.
- 2. Now prepare a mixture of these compound by dissolving them in minimum quantity of solvent prepared above in a watch glass.
- 3. Take whatmann filter paper and cut it into rectangular strips.
- 4. Draw a straight line about 1-1.5 cm above on lower end.
- 5. Insert a drop of mixture of indicators with the help of capillary tube at the centre of the line drawn.
- 6. Place this strip in the beaker containing the solvent such that the mark must not be dip in the solvent and cover the beaker with watch glass.
- 7. After a little time the solvent starts rising up due to absorption phenomenon and mixture of indicators will separate out forming an orange red, orange spot and the yellow spot on the strip.
- 8. Measure the distance of these spots and of solvent from the lower line.
- 9. Now calculate the R_f value for these measured distances.

General calculations:

$$R_{f} = \frac{\text{Distance travelled by sample}}{\text{Distance travelled by solvent}}$$

R_f value of yellow spot

$$R_{f} = \frac{\text{Distance travelled by yellow spot}}{\text{Distance travelled by solvent}}$$

R_f value of orange spot

$$R_{f} = \frac{\text{Distance travelled by orange spot}}{\text{Distance travelled by solvent}}$$

R_f value of orange red spot

$$R_{f} = \frac{\text{Distance travelled by orange red spot}}{\text{Distance travelled by solvent}}$$

Result:

 R_f value of yellow spot = R_f value of orange spot = R_f value of orange red spot =

3) QUANTITATIVE ANALYSIS – DETECTION OF ELEMENTS

As we know all organic compounds contain carbon and hydrogen. Whether oxygen is present or not does not make any contribution for detection and no special test is suggested. In fact the presence of Nitrogen, Sulphur and Halogens has to be detected.

Preparation of Lassaigne's extract or Sodium fusion extract

Take a freshly cut small piece of dry sodium metal in a fusion tube and heat gently. The sodium metal looks like a globule of mercury. Put a small quantity of organic compound under examination into the tube. Liquids are introduced into the tube with the help of a small dropper. Heat the fusion tube slowly at first, then strongly until it is red hot and maintain it at this temperature for a minute or two. Place the red hot end of fusion tube in 5-10 ml of distilled water taken in a china dish. Crush the content of the glass tube with a glass rod and when the reaction with left-over sodium, if any, has subsided, heat the contents of the china dish to boiling. Remove the insoluble matter by filtration. The filtrate known as Lassaigne's extract or Sodium extract, contain nitrogen, sulphur or halogens of the compound in the form of sodium cyanide, sodium suphide or sodium halide due to the following reaction.

 $Na + C + N \rightarrow NaCN$

From organic compound

 $2Na + S \rightarrow Na_2S$

From organic compound

 $Na + C + N + S \rightarrow NaCNS$ (if N and S both are present sodium sulphocyanide)

from organic compound

Na $+x \rightarrow NaX (X=Cl,Br,I)$

DETECTION OF NITROGEN

1. **SODA LIME TEST**. Heat the small quantity of the organic compound with soda lime (NaOH + CaO) in a test tube. Evolution of ammonia indicates the presence of nitrogen. Ammonia evolved gives white fumes with hydrochloric acid and brown ppt. When passed through Nessler's reagent solution.

 $CH_3CONH_2 + NaOH \xrightarrow{-Cao} CH_3COONa + NH_3\uparrow$

Acetamide

2. Lassaigne's test .(i) Take 2-3ml of lassaigne's extract in a test tube and test if it is alkaline to litmus. If it is not, make it alkaline by adding a few drops of sodium hydroxide.

(ii) Add 2ml of freshly prepared $FeSO_4$ solution when dirty green precipitate of $Fe(OH)_2$ is formed. Boil the reaction mixture for 1-2 minutes and cool.

(iii) Add 2-3 drops of ferric chloride solution to the cooled solution and acidify the resulting solution with dilute hydrochloric acid.

A prussion blue or green colouration confirms the presence of nitrogen and a blood red colouration indicates the presence of nitrogen and sulphur both.

 $Na + C + N \rightarrow NaCN$ $FeSO4 + 2NaOH \rightarrow Fe(OH)_2 + Na_2SO_4$ (Green ppt.) $FeSO_4 + 6NaCN \rightarrow Na_4[Fe(CN)_6] + Na_2SO_4$ $3 Na_4[Fe(CN)_6] + 4FeCl_3 \rightarrow Fe_4[Fe(CN)_6]_3 + 12NaCl$

(Prussian blue)

If nitrogen and sulphur both are present, as in thiourea a blood red colouration is produced due to the following reaction.

 $3NaCNS + FeCl_3 \rightarrow Fe(CNS)_3 + 3NaCl$

(blood red colour)

However, absence of blood red colour does not mean that sulphur is always absent .The NaCNS formed is decomposed by excess of sodium and no blood red colouration.

 $NaCNS + 2Na \rightarrow NaCN + Na_2S$

DETECTION OF SULPHUR

1. **LEAD ACETATE TEST**: Take 2ml of lassaigne's filtrate in a test tube .Acidify it with 2-3 drops of acetic acid and add lead acetate solution. A black ppt. of lead sulphide indicates the presence of sulphur.

 $Pb(CH_3COOH)_2 + Na_2S \rightarrow PbS \downarrow +2CH_3COONa$

Lead acetate

(black ppt.) sodium acetate

2. **SODIUM NITROPRUSSIDE TEST**: Take 2ml of sodium extract and add to it a few drops of freshly prepared dilute solution of sodium nitroprusside. A deep violet colour indicates the presence of sulphur in the given compound.

 $Na_2S + Na_2[Fe(CN)_5NO] \rightarrow Na_4[Fe(CN)_5 NOS]$

(Violet colouration)

DETECTION OF HALOGENS

1. SILVER NITRATE TEST

Take 3ml of Lassaigne's filtrate in a test tube and add to it 1ml of conc. nitric acid. Boil the contents for a minute, cool and add to silver nitrate solution.

(a)White ppt. Soluble in ammonium hydroxide indicates chloride ions and hence chlorine element in the organic compound.

(b) Pale yellow ppt. Sparingly soluble in ammonium hydroxide indicates bromide ions and hence bromine element in the compound.

(c) Yellow ppt. Insoluble in ammonium hydroxide indicates iodine ions and hence iodine element in the organic compound.

 $NaCl + AgNO_3 \rightarrow AgCl \downarrow + NaNO_3$

(White ppt.)

AgCl + 2 NH₄OH \rightarrow [Ag(NH₃)₂]Cl + 2H₂O

Soluble

 $NaBr + AgNO_3 \rightarrow AgBr \downarrow + NaNO_3$

(Pale yellow)

 $NaI + AgNO_3 \rightarrow AgI \downarrow + NaNO_3$

(Yellow)

The tests of N, S and halogens are summarised in table below

EXPERIMENT	OBSERVATION	INFERENCE
1. Prepration of Lassaigne's	(i) Residue	Rejected L.E
extract	(ii) Filtrate	
Fused the given organic		
compound with freshly cut small		
piece of sodium metal in a fusion		
tube till it becomes red hot.		
Pluged the red hot end of fusion		
tube into china dish containing 10		
to 15 ml of distilled water. Repeat		
two more fusions. Boiled for 5		
minutes and filtrated.		
2. Test of Nitrogen		
To a portion of L.E in a test tube	A Prussian blue colour	Nitrogen present
added 2 drops of NaOH solution.		
Then added 1-2 ml of freshly		
prepared ferrous sulphate	Blood red colour	N and S both are present
solution.		
Bioled for 2-3 minutes, cooled		
and added a few drops of FeCl ₃		
acidified with conc. HCl.		
3.Test for sulphur		
(i) Lead acetate test	Black ppt.	Sulphur present
Acidified second portion of L.E		
with dilute acetic acid and added		
Lead acetate solution.		
(ii) Sodium Nitroprusside test	Violet colour	Sulphur present
To third portion of L.E added sod.		

Nitroprusside solution.	
4. Tests for halogens	
Silver nitrate test	(i)A curdy white ppt. Chlorine present
Acidified 2-3 ml of L.E with	Soluble in excess of
conc. HNO ₃ and boiled for 1-2	ammonium hydroxide
minutes .Cooled and added silver	(ii)A pale yellow ppt. Bromine present
nitrate solution.	Partially soluble in NH4OH
	(iii)A yellow ppt. Insoluble Iodine present
	in NH4OH

DETECTION AND IDENTIFICATION OF FUNCTIONAL GROUP

The molecules of simple organic compounds may be regarded to be derivatives of hydrocarbons in which one or more of the hydrogen atoms have been replaced by different functional groups eg.-OH; >C=O; -COOH; $-NH_2$ etc.

For the sake of convenience the organic compounds are classified into the following four types depending upon the presence of elements nitrogen, halogen and sulphur.

TYPE 1.TESTS FOR COMPOUNDS CONTAINING CARBON AND HYDROGEN (WITH OR WITHOUT OXYGEN)

Organic compounds which fall in this type are:

(I) CARBOXYLIC GROUP

EXPERIMENT	OBSERVATIONS	INFRENCE	
------------	--------------	----------	--

1. LITMUS TEST		
Dissolve a pinch of the	Blue litmus turns red	Presence of a carboxylic or a
organic compound in 2ml of		phenolic group.
water in a test tube and add		r · · · · · · · · · · ·
to it 2-3 drops of blue litmus		
solution.		
2.SODIUM		
BICARBONATE TEST	Effervescence due to the	Presence of a carboxylic
Dissolve a pinch of the	evolution of carbon dioxide	group
organic compound in water		
in a test tube. Now add to it a		
few drops of 5% aqueous		
NaHCO ₃ solution with a		
dropper.		
3. ESTER FORMATION		
TEST	Pleasent fruity smell	Presence of an ester and
Heat a pinch of the organic		hence, the carboxylic group
compound in a dry test tube		
with 2-3 ml of absolute ethyl		
alcohol and 1-2 drops of		
conc. H ₂ SO ₄ . Cool and pour		
the contents of the tube into		
an aqueous solution of		
sodium carbonate.		
4. FERRIC CHLORIDE		
TEST		
Add a pinch of the organic	Coloured ppt is obtained	Presence of carboxylic
compound to 2-3 ml of		group.
distilled water taken in a test		
tube . now add a few drops of		
ammonium hydroxide		

solution to make it just	
alkaline and shake .Boil off	
excess of ammonia .Cool and	
add a few drops of neutral	
ferric chloride solution to it .	

EXPLANATION SODIUM BICARBONATE TEST

 $RCOOH + NaHCO_3 \ \rightarrow \ RCOONa + CO_2 + H_2O$

ESTER FORMATION TEST

 $RCOOH + CH_3CH_2OH \xrightarrow{H_+} \rightarrow RCOOCH_2CH_3 + H_2O$

FERRIC CHLORIDE TEST

 $\begin{aligned} & \text{RCOOH} + \text{NH}_4\text{OH} \rightarrow \text{RCOONH}_4 + \text{H}_2\text{O} \\ & \text{3RCOONH}_4 + \text{FeCl}_3 \rightarrow (\text{RCOO})_3\text{Fe} + 3\text{NH}_4\text{Cl} \\ & (\text{RCOO})_3\text{Fe} + \text{H}_2\text{O} \rightarrow \text{Fe}(\text{OH})(\text{OOCR})_2 + \text{RCOOH} \end{aligned}$

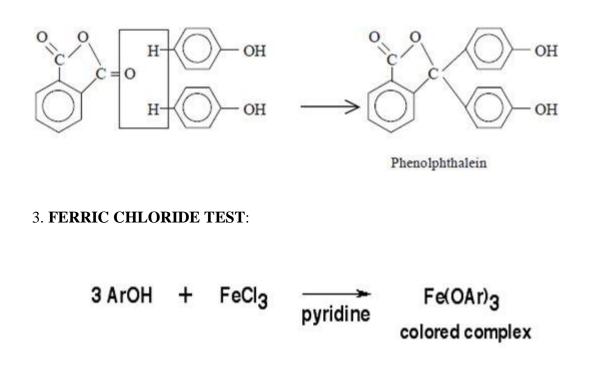
Name of the carboxylic acid	Colouration or ppt. In the FeCl ₃ test
Acetic acid	Deep red coloration which changes to
	reddish brown ppt. On heating
Oxalic acid	Light yellow ppt.
Benzoic acid	Buff –coloured ppt.
Phthalic acid	Brownish –buff coloured ppt.
Cinnamic acid	Light yellow ppt.
Succinic acid	Buff ppt. Soluble in dil.HCl

Distinction between Aliphatic and Aromatic acids –Sodium hydroxide test: Add a pinch of the organic acid to a test tube containing 2-3ml of aq. NaOH solution and shake .The acid rapidly dissolve due to the formation of the corresponding sodium salt.

 $RCOOH + NaOH \rightarrow RCOONa + H_2O$

Acidify the above solution with dil.HCl .if a white ppt. Is obtained, it shows that the given compound is an aromatic acid otherwise aliphatic acid.

PHENOLIC GROUP


EXPERIMENT	OBSERVATION	INFERENCE
1. LITMUS TEST		
Dissolve a pinch of the	Blue litmus turns red	Presence of a carboxylic or a
organic compound in a 2ml		phenolic group.
of water in a test tube and		
add to it 2-3 drops of the blue		
litmus solution.		
2.FERRIC CHLORIDE		
TEST	Appearance of a violet ,blue	Presence of phenolic group
To an aqueous solution of the	,green or red colouration	
organic compound ,add 4-5		
drops of neutral ferric		
chloride solution .		
3. AZO DYE TEST		
Dissolve a pinch of organic	Brilliant red dye	Presence of phenolic group.
compound in dil. NaOH		
solution. In another test tube		
take 0.5 ml of aniline and		
dissolve in dil.HCl. Cool two		
tubes in ice –cold water. Add		

solid NaNO ₂ to aniline		
_		
hydrochloride solution.		
Finally add the alkaline		
phenolic solution to the		
diazotized mixture solution.		
4. PHTHALEIN TEST		
Take 0.2g of organic	Intense green, purple, blue or	Phenolic group present.
compound ,0.5g of phthalic	red colour obtained.	
anhydride and 2-3 drops of		
conc. H ₂ SO ₄ . Heat for about		
1 minute. Cool and pour the		
reaction mixture into 15ml of		
dilute NaOH solution taken		
in a beaker.		

EXPLANATION.DYE FORMATION TEST:

2. **PHTHALEIN TEST**: When phenols are heated with phthalic anhydride in the presence of conc. H₂SO₄, they undergo condensation to form phthalein dyes which give characteristic colour in NaOH solution.

ALCHOLIC HYDROXIDE GROUP

Alcohols are classified as primary (1^0) , secondary (2^0) and tertiary (3^0) depending upon wheather –OH group is attached to 1^0 , 2^0 , 3^0 carbon atom respectively.

Alcohols are neutral towards litmus and also do not produce effervescence with NaHCO₃ solution .these are generally indicated by the following tests.

EXPERIMENT	OBSERVATION	INFERENCE
1. SODIUM METAL TEST		
Add freshly cut piece of	Brisk effervescence due to	Presence of an alcoholic
sodium metal to 0.5 ml of the	evolution of hydrogen.	hydroxide group.
organic liquid in a dry test		
tube. If the organic		
compound is a solid, prepare		
its solution in dry benzene or		
ether and then add to it a		
freshly cut piece of sodium		
metal.		

2. ACETYL CHLORIDE		
TEST:		
To about 0.2ml of the	HCl gas is evolved which is	Presence of an alcoholic
organic compound, add	detected by its pungent smell	hydroxide group.
0.5ml of acetyl chloride	and dense white fumes with	
dropwise.	NH4OH.	
3. ESTER TEST:		
Heat about 1.0g of the	A pleasant fruity odour.	Presence of an alcoholic
compound with 1ml each of		hydroxyl group.
glacial acetic acid and		
conc.H ₂ SO ₄ .		

SODIUM METAL TEST:

 $2ROH \ + \ 2Na \ \rightarrow 2RONa \ + H_2$

ACETYL CHLORIDE TEST:

 $ROH + CH_3COC1 \rightarrow RCOOCH_3 + HC1$

ESTER TEST:

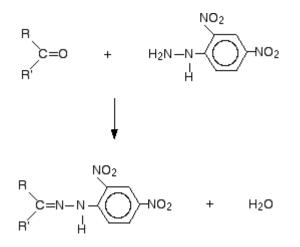
 $ROH + CH_3COOH \rightarrow CH_3COOR + H_2O$

DISTINCTION BETWEEN 1⁰,2⁰,3⁰ ALCOHOLS

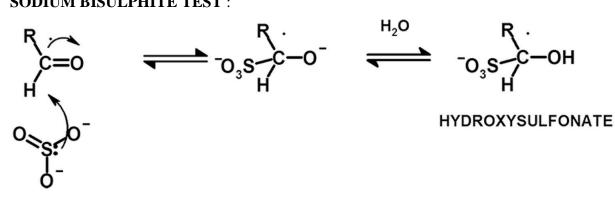
LUCAS TEST:

Take about 1ml of alcohol in a test tube, add 8-10 drops of Lucas reagent. Shake the mixture and observe

- (i) If cloudiness appears immediately, it indicates tertiary alcohol.
- (ii) If cloudiness appears within five minutes, it indicates secondary alcohol.
- (iii) If cloudiness appears only upon heating, it indicates primary alcohol.


ALDEHYDES AND KETONE GROUP:

Both aldehydes and ketone contain the (>c=o) group in their molecules and are indicated by the following tests.


EXPERIMENT	OBESERVATION	INFRENCE
1. 2,4-		
DINITROPHENYLHYDRAZINE		
TEST OR BRADY'S TEST:		
Dissolve 0.1g of the organic	Crystalline yellow, orange	Presence of the carbonyl
compound in 2ml of alcohol and	or red ppt.	group.
add to it 1-2ml of 2,4		
dinitrophenylhydrazine reagent and		
shake well.		
2. SODIUM BUSULPHITE		
TEST:		
Shake about 0.2g or 0.2ml of the	White ppt.	Presence of the carbonyl
compound with 1ml of a saturated		group.
solution of NaHSO3.		
3.TOLLEN'S REAGENT TEST:		
Shake a pinch of the organic	Grey or brown ppt .is	Presence of an aldehydic
compound to the freshly prepared	formed silver mirror is	group.
Tollen's reagent keep the tube in	obtained along the sides of	
briskly boiling water for 2 minutes.	the test tube.	

4. FEHLING SOLUTION TEST:	Red ppt. Of Cu ₂ O.	Presence of an aldehydic
Add a pinch of the organic		group.
compound to 1-2 ml freshly		
prepared Fehling solution and shake		
well. Keep the test tube in briskly		
boiling water for about 2 minutes.		

2,4-DINITROPHENYLHYDRAZINE OR BRADY'S TEST:

SODIUM BISULPHITE TEST :

TOLLEN'S REAGENT TEST:

 $AgNO_3 + NaOH \rightarrow AgOH + NaNO_3$

$AgOH + NH_4OH \rightarrow [Ag(NH_3)_2]^+OH^- + 2H_2O$

Tollen's reagent

RCHO+
$$2Ag(NH_3)_2^+$$
 +3OH⁻ \rightarrow RCOO⁻ +4NH₃ +2Ag

silver mirror

FEHLING SOLUTION TEST:

 $\begin{aligned} CuSO_4 + 2NaOH &\rightarrow Cu(OH)_2 + Na_2SO_4 \\ Cu(OH)_2 &\rightarrow CuO + H_2O \\ RCHO + 2CuO &\rightarrow RCOOH + Cu_2O \end{aligned}$

Red ppt.

This test is given by only aliphatic aldehydes and hence can be used to distinguish between aliphatic and aromatic aldehydes.

EXPERIMENT	OBSERVATION	INFRENCE
1. 2,4-		
DINITROPHENYLHYDRAZINE		
TEST OR BRADY'S TEST:		
Dissolve 0.1g of the organic	Crystalline yellow, orange	Presence of the carbonyl
compound in 2ml of alcohol and	or red ppt.	group
add to it 1-2ml of 2,4		
dinitrophenylhydrazine reagent and		
shake well.		
2. SODIUM BUSULPHITE		
TEST : Shake about 0.2g or 0.2ml	White ppt.	Presence of the carbonyl
of the compound with 1ml of a		group.
saturated solution of NaHSO ₃ .		
3. SODIUM NITROPRUSSIDE		
TEST: Take about about 1ml of		
sodium nitroprusside solution and	Red colouration	Presence of ketonic group

TEST FOR KETONIC GROUP

make it alkaline by the addition of a		
few drops of sodium hydroxide		
solution. Now add a pinch of the		
organic compound to it and shake		
well.		Presence of ketonic group
4. IODOFORM TEST : Warm the	Yellow ppt.	
given compound with iodine and		
5% NaOH Solution in a boiling		
water bath.		

SODIUM NITROPRUSSIDE TEST:-

 $CH_3COCH_3 + OH^- \rightarrow CH_3COCH_2^- + H_2O$

 $[Fe(CN)_5NO]^{2-} + CH_3COCH_2^{-} \rightarrow [Fe(CN)_5NOCH_3COCH_2)]^{3-}$

Red

IODOFORM TEST

 $R\text{-}CO\text{-}CH_3 + 3I_2 + 3NaOH \rightarrow R\text{-}CO\text{-}Cl_3 + 3NaI + 3H_2O$

 $\text{R-CO-Cl}_3 + \text{NaOH} \ \rightarrow \text{CHI}_3 {\downarrow} + \text{RCOONa}$

iodoform(yellow ppt)

ESTER GROUP

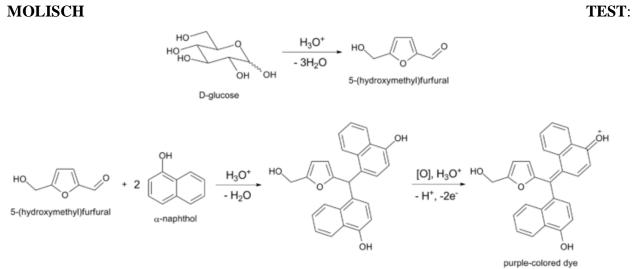
EXPERIMENT	OBSERVATION	INFRENCE
1. PHENOLPHTHALEIN		
TEST : Dissolve 0.2g or	Pink colour disappears	Ester group present.
0.2ml of the organic		
compound in 3-4ml of ethyl		
alcohol in a test tube and add		
to it, 1 drop of		
phenolphthalein and 2-3		
drops of 5% aq. NaOH		
solution till a permanent pink		
colour is obtained .shake well		

and keep the test tube in		
boiling water for a few		
minutes.		
2.HYDROXAMIC ACID		
TEST : Dissolve 0.2ml or	Deep red or violet coloration	Ester group present
		Ester group present
0.2g of the organic		
compound in 5ml of 95%		
alcohol. Add 0.2g of		
hydroxylamine hydrochloride		
to it and shake well to make a		
clear solution. Now add 5ml		
of 10% NaOH to make the		
solution alkaline. Boil the		
reaction for about a minute,		
cool and acidify with dil.		
HCl. Then add a few drops of		
FeCl ₃ solution.		

PHENOLPHTHALEIN TEST

 $C_{6}H_{5}COOC_{2}H_{5} + NaOH \rightarrow C_{6}H_{5}COONa + C_{2}H_{5}OH$

HYDROXAMIC ACID TEST


 NH_2OH . $HCl + NaOH \rightarrow NH_2OH + NaCl + H_2O$

 $R-CO-OR' + NH_2OH \rightarrow R-CO-NHOH + R'OH$ $3R-CO-NHOH + FeCl_3 \rightarrow (RCONHO)_3Fe + 3HCl$

CARBOHYDRATE GROUP:

This class of organic compound contains monosaccharides, disaccharides and polysaccharides. Except for cellulose and starch, they are highly soluble in water. However, all of them are insoluble in ether. Carbohydrates are detected by the following tests.

EXPERIMENT	OBSERVATION	INFERENCE
1. DRY HEATING TEST.		
Heat a pinch of the organic	Charring occurs with the	Carbohydrates group present.
compound in a dry test tube.	characteristic smell of a burnt	
	sugar.	
2. Conc. H ₂ SO ₄ TEST		
Heat a pinch of the organic	Charring occurs with the	Carbohydrates group present
compound with 2ml of	characteristic smell of a burnt	
conc.H ₂ SO ₄ .	sugar.	
3. MOLISCH TEST		
Dissolve about 0.2g of the	Deep violet ring appers at the	Carbohydrates group present
organic compound in 1ml of	junction of the two layers.	
water and add to it 4-5 drops		
of 10% alcoholic solution of		
α -naphthol. Shake the		
solution well. Now add		
carefully about 1ml of conc.		
H ₂ SO ₄ along the sides of the		
test tube.		

DISTINCTION BETWEEN REDUCING AND NON-REDUCING SUGARS

EXPERIMENT	OBSERVATION	INFERENCE
1. TOLLEN'S REAGENT		
TEST		
Take 2ml of freshly prepared	A silver mirror is obtained	Presence of a reducing sugar
Tollen's reagent in a test tube	along the sides of the test	
and add to it a pinch of the	tube.	
carbohydrate. Place the test		
tube in briskly boiling water		
for 2 minutes.		
2. FEHLING SOLUTION		
TEST		
Mix equal volumes of		
Fehling solution A and	Red ppt. of Cu ₂ O	Presence of a reducing sugar.
Fehling solution B. Now add		
a pinch of the sugar to this		
deep blue solution. Place the		
test tube in briskly boiling		
water for about 2 minutes.		
3. BENEDICT'S		

SOLUTION TEST		
Take 2ml of Benedict's	Red ppt. Of Cu ₂ O	Presence of a reducing sugar
solution in a test tube and to		
it 0.2g of the organic		
compound. Boil for 2		
minutes and then cool.		

Chemistry of the tests

1. Fehling solution test

On mixing equal volume of Fehling A(CuSO₄ Solution)and Fehling solution B (Roschelle salt in NaOH solution), a deep blue solution is obtained . on heating with reducing sugars, a red precipitate of cuprous oxide is obtained.

$$CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$$
$$Cu(OH)_2 \rightarrow CuO + H_2O$$

2. Tollen's reagent test

On heating with reducing sugars, Tollen's reagent gives a deposit of silver which appears as mirror.

$$2AgNO_3 + NH_4OH \rightarrow AgOH + 2NH_4NO_3$$
$$2AgOH \rightarrow Ag_2O + H_2O$$

ETHER GROUP

Ethers can be regarded as the derivative of water in which the hydrogen atoms are replaced by aliphatic or aromatic groups. Ethers are volatile inflammable liquids having pleasant odour. They are soluble in conc. H₂SO₄. This solubility distinguishes ethers from hydrocarbons.

IDENTIFICATION TESTS FOR ETHERS

EXPERIMENT	OBSERVATION	INFRENCE
1. Iodine test		
Dissolve 1ml of compound in	Brown coloured solution	Ether present
3ml benzene, then add 3ml of		
dilute solution of iodine in		

benzene.		
2. Feigl's test		
Take 2ml of the compound in	Deep blue colour appears on	Ether present
a test tube and keep a filter	the filter paper	
paper moistened in cupric		
acetate and benzidine		
hydrochloride on the mouth		
of the test tube .Heat the		
contents for 4-5 minutes.		

AMIDES (-CO-NH₂ GROUP)

Amides are derivatives of carboxylic acids in which –OH group is replaced by amino group. These are soluble in water due to hydrogen bonding.

IDENTIFICATION TESTS OF AMIDES

EXPERIMENT	OBSERVATIONS	INFRENCE
1.Sodium hydroxide test	Vapour with ammonical	Amide present
Heat a pinch of organic	smell evolved	
compound with NaOH	(i)white ppt. Formed	Aromatic amide present
solution .added dil.HCl to	(ii)No white ppt. Formed	Aliphatic amide present
above solution.	(iii)CO ₂ gas evolved	Urea present
2. Nitrous acid test	Brisk effervescence of	Amide present
Dissolve a pinch of organic	nitrogen gas	
compound in dil.HCl. In		
another test tube dissolve		
1.0g of NaNO ₂ in 5.0 ml of		
water .cool the solutions in		
ice and mix them.		
3. Test for aromatic amides		
To an aqueous solution of	Immediate bluish-red	Aromatic amide present

compound add 5-7 drops of	colouration in cold.	
6% H ₂ O ₂ and boil the		
contents .cool and add 1-2		
drops of 5% FeCl ₃ solution.		

Chemistry of tests for amide group

1. Sodium hydroxide test

 $RCONH_2 + NaOH \rightarrow RCOONa + NH_3$

On acidification with dil.HCl a ppt of insoluble aromatic acid is formed

 $ArCOONa + HCl \rightarrow ArCOOH \downarrow + NaCl$

2. Nitrous acid test

 $NaNO_2 + HCl \rightarrow HNO_2 + NaCl$

 $RCONH_2 + HNO_2 \rightarrow RCOOH + N_2 + N_2O$

3. Test for aromatic amides

 $ArCONH_2 + H_2O_2 \rightarrow ArCONHOH + H_2O$

AMINES

Amines are organic derivatives of ammonia in which one or more hydrogen are substituted by alkyl or aryl groups. Amines are classified as primary, secondary or tertiary depending upon the degree of substitution of nitrogen. In primary amines one alkyl or aryl group is attached to nitrogen. If two alkyl or aryl groups are attached to nitrogen, it is secondary amine.

Similarly a tertiary amine is obtained by replacement of all the three hydrogen atoms from a molecule of ammonia.

TEST TO DISTINGUISH BETWEEN PRIMARY, SECONDARY AND TERTIARY AMINES

EXPERIMENT	OBSERVATION	INFRENCE
1. Nitrous acid test		
(i) Blank test	There is evolution of N_2 gas.	
In a test tube take 5ml of		
dil.HCl , Cool in ice cold		
water and add 2ml of ice cold		

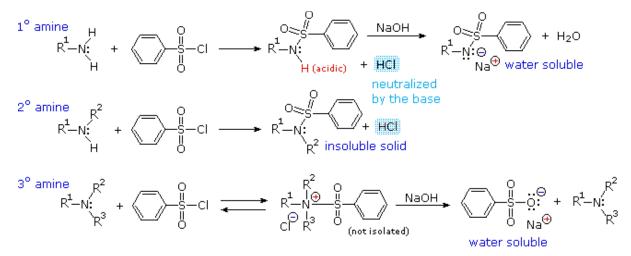
NoNO solution Observe			
NaNO ₂ solution . Observe.			
(ii)Test with amine			
Dissolve 0.2g of compound	(i)The solution remains clear	Aliphatic primary amine	
in 5ml of dil.HCl ,cool in ice	and there is much greater	group present	
cold water ,then add 2ml of	evolution of N_2 than in blank		
ice cold NaNO ₂ solution	test.		
.Observe .	(ii) The solution remains	Aromatic primary amino	
	clear and there is slightly	group present.	
	greater evolution of nitrogen		
	gas than in the blank test.		
	(iii)A yellow oily layer is	Secondary amine present.	
	formed.	Tertiary amine present.	
	(iv)A brown ppt. Is formed		
	which changes to green on		
	adding dil. NaOH solution.		
2.HINSBERG TEST			
Take 0.5ml of given	(i) No ppt. Formed but some	Primary amine present	
compound in a clear test	insoluble material is formed		
tube, add 2ml of 25%	on addition of conc. HCl.		
NaOH, 2ml of water and	(ii) ppt. Formed which does	Secondary amine present	
1ml of benzene sulphonyl	not dissolve in conc. HCl.	v 1	
chloride. Shake the contents	(iii) ppt. Formed which	Tertiary amine present	
for 10 minutes, cool under	dissolved in conc. HCl.	v 1	
tap water, observe the			
formation of ppt. if ppt. is			
formed, add 2ml conc. HCl			
and observe.			

CHEMISTRY OF TESTS TO DISTINGUISH BETWEEN 1⁰, 2⁰, 3⁰ AMINES 1. NITROUS ACID TEST

If the solution remains clear and there is much greater evolution of nitrogen gas compared to blank test, the primary aliphatic amine is indicated.

(i)
$$NaNO_3 + HCl \rightarrow HNO_2$$

 $R\text{-}NH_3 + HNO_3 + HCl \rightarrow R\text{-}N \equiv NCl + H_2O \rightarrow ROH + N_2 + H_2O + NaCl$


(ii) 2^0 amine

 $^{R}_{R}$ > NH + HONO \rightarrow R₂N.NO +H₂O

(II) If the solution remains clear but there is slightly greater evolution of N_2 than in the blank test, the primary aromatic amine is indicated.

2. HINSBERG TEST

A clear solution is obtained in NaOH, which gives an insoluble matter on addition of conc. HCl indicates primary amine, precipitate is formed which is insoluble in NaOH indicates presence of secondary amine and tertiary amine do not react with Hinsberg reagent the precipitate formed are soluble in water.

PRIMARY AMINES (-NH₂ GROUP)

IDENTIFICATION TESTS FOR PRIMARY AMINE (-NH₂ GROUP)

EXPERIMENT	OBSERVATION	INFRENCE
1.NITROUS ACID		
TEST:Dissolve about 0.2g of	Brisk effervescence o	F Primary aliphatic or aromatic

compound in 5.0 ml if	nitrogen gas	amine present.
dil.HCl, cool in ice cold		
water, then add 2ml of ice		
cold NaNO ₂ solution.		
2.CARBYLAMINE TEST		
Take 0.2g of solid KOH in a	Offensive smell	Primary aliphatic or aromatic
dry test tube, add 2-3 ml of		amine present
ethanol, warm the contents		
until KOH dissolves. To this		
add few drops of chloroform		
and a pinch of given		
compound.		

CHEMISTRY OF THE TEST FOR PRIMARY AMINE

1. NITROUS ACID TEST:

 $R-NH_2 + NaNO_2 + HCl \rightarrow ROH + N_2 + H_2O + NaCl$

2. CARBYLAMINE TEST:

 $R-NH_2 + CHCl_3 + 3KOH (alc.) \rightarrow RNC+ 3KCl + H_2O$

DISTINGUISING TESTS BETWEEN ALIPHATIC AND AROMATIC PRIMARY AMINES

EXPERIMENT	R-NH₂(aliphatic amine)	Ar-NH ₂
1. Rimin's test:		
To a pinch of organic	Violet colour appears within	No reaction
compound in the test tube	two minutes.	
add 5.0 ml of water ,shake		
then add 1.0ml of acetone		
and 2-3 drops of sodium		
nitroprusside solution.		
2. Azo dye test:		

Take a pinch of organic	No reaction	A brilliant orange or red dye
compound add 5ml of dil.		is formed.
HCl and cool in ice to $0-5^{\circ}$ C.		
Add 2ml of ice cold NaNO ₂		
solution. Shake the contents		
.in another test tube, dissolve		
about 1.0g of β -naphthol in		
NaOH solution. Cool to 0-		
5^{0} C and mix it with the first		
solution.		
3. Bleaching powder test:		
Shake a small amount of	No reaction	Purple colouration which
organic compound with		soon turns brown.
5.0ml of water, then add a		
few drops of bleaching		
powder solution.		

IDENTIFICATION TESTS FOR SECONDARY AMINES

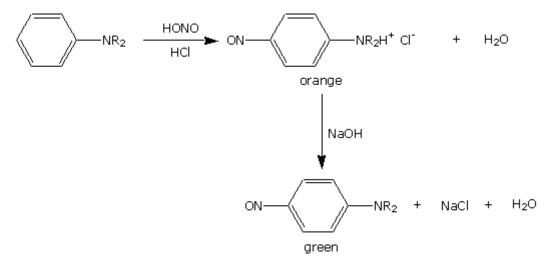
EXPERIMENT	OBSERVATION	INFRENCE
1. Nitrous acid test:		
Dissolve 0.5g of organic	A yellow oily layer separates	Secondary amine present.
compound in 5ml of dil.	at the bottom.	
HCl .in another test tube,		
dissolve about 1.0g of		
NaNO ₂ in 5.0ml of water.		
Cool both the solutions in		
ice bath. Mix the two		
solutions.		
2. Simon's test: To the		
solution of organic	Deep blue or violet colour	Secondary amine present.

compound in ethyl alcohol,	formed.	
add few drops of sodium		
nitroprusside solution. Then		
add few drops of dil.		
acetaldehyde solution.		

CHEMISTRY OF NITROUS ACID TEST:

 $R_2NH + HONO \rightarrow R_2N.NO + H_2O$

IDENTIFICATION TEST FOR TERTAIRY AMINE


EXPERIMENT	OBSERVATION	INFRENCE
METHIODIDE		
FORMATION: To a small	Colourless crystals formed	Tertiary amine present
amount of compound ,add 4-		
5 drops of methyl alcohol		
and 2-3 drops od methyl		
iodide. The mixture becomes		
hot. Cool the contents.		
NITROUS ACID TEST:		
Dissolve a pinch of organic	Brown ppt is obtained which	Tertiary amine present.
compound in dil. HCl in	turns bright green on adding	
another test tube dissolve	few drops of NaOH.	
1.0g of NaNO ₂ in 5.0ml of		
water. Cool the solution in		
bath and mix the two		
solutions.		

CHEMISTRY OF TESTS FOR TERTAIRY AMINES

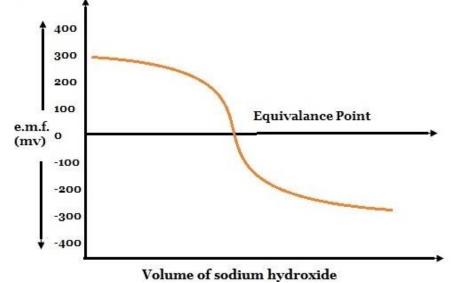
1. Methiodide formation test:

 $R_3N + CH_3I \rightarrow R_3N^+CH_3I^-$

2. Nitrous acid test: Nitrous acid does not react with aliphatic tertiary amines nor does it react with aromatic tertiary amine which contain three aryl groups like $(C_6H_5)_3$ N.

4) Titrate given solutions of HCI and NaOH potentiometrically.

Requirements: Potentiometer, battery, standard cell, calomel electrode, platinum electrode, quinhydrone, beaker, stirrer, burette, N/10 HCI, N/10 NaOH. Theory


This is an equilibrium mixture of quinone and hydroquinone. This cannot be used in strongly base solution (pH>9) because the equilibrium will be disturbed. Quinone - hydroquinone system involves the equilibrium

For this reduction reaction, the potential developed on the platinum electrode immersed in this system is given by Nernst equation

$$egin{aligned} E_{el} &= E_{el}^0 - [-rac{2.303 RT}{2F} \log rac{[Q]}{[QH_2]} \ &-rac{2.303 RT}{F} \log H^+] \ E_{el} &= E_{el}^0 + rac{2.303 RT}{2F} \log rac{[Q]}{[QH_2]} \ &+rac{2.303 RT}{F} \log H^+] \end{aligned}$$

instead of taking quinone & hydroquinone a small amount of quinhydrone, which is an equimolar compound of quinone Q and hydroquinone QH2 is taken. QH2 is a weak acid; its ionisation is very small particularly if the pH of the solution is less than 7. Therefore, the concentration of hydroquinone, QH2 is same as that of quinone Q i.e. [Q]/[QH2] = unity and hence the Nernst equation may be written as, $= \text{Eo} + 0.0591 \log [\text{H}+]$ at 25 o C = Eo - 0.0591pH The standard electrode potential of quinhydrone electrode Eo = + 0.6996 V E = 0.6996 -0.0591 pH Thus the potential of quinhydrone electrode is dependent on pH of the solution i.e. quinhydrone electrode behaves as a reversible hydrogen electrode. This is less expensive than hydrogen electrode since it can be set up easily simply by adding a pinch of quinhydrone to the solution and inserting a Pt electrode for making electrode connections. The basic reaction involved in the neutralisation of an acid with a base is H+ (aq) + OH⁻(aq) \rightleftharpoons H2O ...(1) Therefore, the indicator electrode to be selected is obviously an electrode reversible to H+ ions. e.g. Hydrogen electrode, glass electrode or quinhydrone electrode. For better results and simple experimentation the latter electrode is commonly used. The cell setup using quinhydrone electrode is: SCE | quinhydrone (acid solution) | pt ... (2) A known volume of the acid is taken in the beaker.

Standard NaOH is taken in the burette and is added in small volume each time. The value of potential is noted after each addition. A graph is plotted by taking the volume of NaOH added along x-axis and the corresponding voltage on the y-axis.

End point in an acid- alkali titration. Zero EMF point and inflexion point on the curve may or may not coincide.

Procedure: Take 20 ml of the acid solution (or any other measured volume enough to allow the indicator electrode and reference electrode to dip into the solution) in a beaker. Add a pinch of quinhydrone to saturate the solution. Dip the indicator (Pt) and reference (SCE) electrodes in the solution . If a dip type SCE is not available, the beaker solution can be put in contact with a laboratory type SCE through a salt bridge. Connect the two electrode leads to a potentiometer. If we find that the cell e.m.f. is not in the range of the potentiometer, the terminal connections at the potentiometer may be interchanged to obtain appropriate contact of +ve and -ve poles of cell to the potentiometer +ve and -ve poles. Record the initial value of cell e.m.f.

Add the alkali solution in 1 ml lots. Shake well after each addition and measure the cell EMF at each stage. From this rough titration find out the approximate volume needed for reaching the end point.

Repeat the titration by adding 1 or 2 ml of alkali in initial steps but by adding one or two drops of alkali at a time in the ml step expected to involve the end point. Subsequent additions can be made in steps of 1 or 2 ml of alkali again.

Plot a graph between cell EMF (Y-axis) and volume of alkali used (X-axis). From this graph read the end point volume of the titrant .

It may be pointed out that so long as quinhydrone is to be used as an indicator electrode, we shall have to take the acid solutions in the beaker and alkali in the burette. It is so because in alkaline solutions the hydroquinone part of quinhydrone is rapidly oxidised by aerial oxygen.

Cell used : SCE | Acid solution | Pt |Quinhydrone|

Volume of acid solution taken = Normality of alkali used =

S.No	Volume of alkali used	E.M.F of cell	

Calculations:

 $N_1V_1=N_2V_2\\$

Where

N₁ is the strength of acid (known)

 $N_2=?$

 V_1 is the volume of acid taken in beaker (known)

V₂=Volume of alkali from graph